
ISEN 310 Notes

Christopher Abib

December 2022

Descriptive Statistics

Measures of Location

The Mean represents the calculated center of a set of values. The Sample Mean (x̄) is the point estimate of
the Population Mean (/mu).

x̄ =
1

n

n∑
i=1

xi

The Median represent the middling value of a set of numbers, after it has been ordered from least to greatest.
The Sample Median (x̃) is the point estimate of the Population Median (µ̃).

x̃ =

{
n is even (n+1

2 )thordered value

n is odd average of (n2 )
th and (n2 + 1)thordered value

Measures of Variability

The Sample Variance (s2) is the point estimate of the Population Variance (σ2). For this estimate, the xi’s
tend to be closer to the sample mean (x̄) than to the population mean (µ). To compensate for this, the
Sample Variance is taken with 1 degree of freedom, having a denominator of n − 1, where n is the sample
size.

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

In the Population Variance is taken with N as the population size.

σ2 =
1

N

N∑
i=1

(xi − µ)2

The Sample Standard Deviation (s) is the point estimate of the Population Standard Deviation (σ).

s =
√
s2

σ =
√
σ2
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var(X)

sd(X)

A measure of spread that is resistant to outliers is the Fourth Spread, where Qi represents each quartile.
Typically, any observation farther than 1.5fs from the closest quartile is an outlier. An outlier is extreme if
it is more than 3fs from the nearest quartile, and mild otherwise.

fs = Q3 −Q1

quantile(X, probs=c(0, .25, .5, .75, 1))

Probability

The Sample Space of an experiment, denoted by S, is the set of all outcomes of that experiment.
An Event is any collection (subset) of outcomes contained in the sample space S. An event is simple if it
consists of exactly one outcome and compound if it consists of more than one outcome.

Some relations from set theory:

1. The compliment of an event A, denoted by A′, is the set of all outcomes in S that are not contained
in A.

2. The union of two events A and B, denoted by A ∪B and read ”A or B”, is the event consisting of all
outcomes that are in A and/or B.

3. The intersection of two events A and B, denoted by A∩B and read ”A and B,” is the event consisting
of all outcomes that are in both A and B.

Let ∅ denote the null event (the event consisting of no outcomes whatsoever). When A ∩ B = ∅, A and B
are said to be mutually exclusive or disjoint events.

Basic probability principles:

1. Axiom 1 : For any event A, P (A) ≥ 0

2. Axiom 2 : P (S) = 1

3. Axiom 3 : If A1, A2, A3, · · · are disjoint events, then P (A1∪A2∪A3∪· · · ) = P (A1)+P (A2)+P (A3)+· · ·

4. P (∅) = 0

5. For any event A, P (A) + P (A′) = 1
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6. For any event A, P (A) ≤ 1

7. Addition Rule: For any two events A and B,

P (A ∪B) = P (A) + P (B)− P (A ∩B)

8. Addition Rule: For any two events A, B, and C,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

Conditional Probability

For any two events A and B with P (B) > 0, the conditional probability of A given that B has occurred is
defined by

P (A|B) =
P (A ∩B)

P (B)

and
P (A ∩B) = P (A|B) · P (B)

0.0.1 Bayes’ Theorem

Law of Total Probability : Let A1, ..., Ak be mutually exclusive and exhaustive events. Then for any other
event B,

P (B) =

k∑
i=1

P (B|Ai) · P (Ai)

Bayes’ Theorem: Let A1, ..., Ak be mutually exclusive and exhaustive events with prior probabilities P (Ai)
where (i = 1, ..., k. Then for any other event B for which P (B) > 0, the posterior probability of Aj given
that B has occurred it

P (Aj |B) =
P (Aj ∩B)

P (B)
=

P (B|Aj) · P (Aj)∑k
i=1 P (B|Ai) · P (Ai)

j = 1, ..., k

Independence

Two events A and B are independent if P (A|B) = P (A) and are dependent otherwise.

Multiplication Rule: A and B are independent if and only if

P (A ∩B) = P (A) · P (B)

Events A1, ..., An are mutually independent if for every k (k = 2, ..., n) and every subset of indices i1, ..., in,

P (Ai1 ∩Ai2 ∩ ... ∩Ain = P (Ai1) · P (Ai2) · · ·P (Ain)

Counting Techniques

Letting N denote the number of outcomes in a sample space, where all outcomes are equally likely, and
N(A) represent the number of outcomes in an event A,

P (A) =
N(A)

N

Product Rule: If the first element or object of an ordered pair can be selected in n1 ways, and for each of
these n1 ways the second element of the pair can be selected in n2 ways, then the number of pairs is n1 · n2.
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Combinatorics

Combinatorics is an branch of math studying the enumeration, combination, and permutation of sets of
elements.

Combinations

aka: the binomial coefficient, choice number, n choose k
The number of ways of choosing k unordered outcomes from n possibilities.

nCk =

(
n

k

)
=

n!

k!(n− k)!

This code returns the binomial coefficient:

choose(n, k)

This code returns a ’k x length(X)’ matrix where the columns are each combination:

combn(X, k)

Permutations

aka: arrangement number, order, n pick k

nPk =
n!

(n− k)!

choose(n, k) * factorial(k)

Random Variables

For a given sample space S of some experiment, a random variable (rv) is any rule that associates a number
with each outcome in S. In mathematical language, a random variable is a function whose domain is the
sample space and whose range is the set of real numbers. Random variables are customarily denoted by
uppercase letters; lower case letters are used to represent a particular value of the corresponding random
variable. The notation X(ω) = x means that x is the value associated with the outcome ω by the rv X.

Discrete Random Variable: an rv whose possible values either constitute a finite set or else can be listed in
a countably (integer) infinite sequence
Continuous Random Variable: an rv in which both of the following apply

1. Its set of possible values consists either of all numbers in a single interval on the number line (possibly
infinite in extent)

2. No possible value of the variable has positive probability, that is, P (X = c) = 0 for any possible value
c

Expected Value

µX = E[X]
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Variance

Variance
σ2
X = Var[X] = E[X2]− E[X]2

Standard Deviation
σX =

√
Var[X]

Variance of a Linear Function
Var[aX + b] = σ2

aX+b = a2σ2
X

Discrete Random Variables

F (X) = P (X ≤ x)

Discrete Distributions

Bernoulli Distribution

Bernoulli Random Variable: any random variable whose only possible values are 0 and 1.

Binomial Distribution

The Binomial Random Variable X associated with a binomial experiment consisting of n trials is defined
as: X = the numbers of successes among n trials where there is a p chance of each success.

X ∼ Bin(n, p)

E[X] = np

Var[X] = np(1− p) = npq

b(x;n, p) =

{(
n
x

)
px(1− p)n−x x = 0, 1, 2, ..., n

0 otherwise

B(x;n, p) =

x∑
y=0

b(y;n, p)

R code to compute the distribution, where size=n and prob=p.

dbinom(x, size , prob) # pdf

pbinom(q, size , prob) # cdf

qbinom(p, size , prob) # quantile

rbinom(n, size , prob) # random numbers

Poisson Distribution

X ∼ Poisson(λ)
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E[X] = λ

Var[X] = λ

f(x;λ) =
e−λ · λx

x!
x = 1, 2, 3, ...

F (x;λ) =

x∑
y=0

f(y;λ)

R code to compute the distribution, where lambda=λ

dpois(x, lambda) # pdf

ppois(q, lambda) # cdf

qpois(p, lambda) # quantile

rpois(n, lambda) # random numbers

Continuous Random Variables

Continuous Distributions

Normal Distribution

X ∼ N(µ, σ2)

E[X] = µ

Var[X] = σ2

f(x;λ) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

−∞ < x < ∞

F (x;λ) =
1

2

[
1 + erf

(
x− µ

σ
√
2

)]
−∞ < x < ∞

R code to compute the distribution, where mean=µ and sd=σ.

dnorm(x, mean=0, sd=1) # pdf

pnorm(q, mean=0, sd=1) # cdf

qnorm(p, mean=0, sd=1) # quantile

rnorm(n, mean=0, sd=1) # random numbers

Standard Normal Distribution

Special case of the Normal Distribution
Z ∼ N(0, 1)

Z =
X − µ

σ
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E[Z] = 0

Var[Z] = 1

φ(z;λ) =
1√
2π

e−
z2

2 −∞ < z < ∞

Φ(z;λ) =
1

2

[
1 + erf

(
z√
2

)]
−∞ < z < ∞

Exponential Distribution

X ∼ Exp(λ)

Suppose that the number of events occurring in any time interval of length t has a Poisson distribution
X ∼ Poisson(λ = αt) (where α, the rate of the event process, is the expected number of events occurring in
1 unit of time) and that numbers of occurences in nonoverlapping intercals are indfependent of one another.
Then the distribution of elapsed time between the occurrence of two successive events is Y ∼ Exp(λ = α).

E[X] =
1

λ

Var[X] =
1

λ2

f(x;λ) =

{
0 x < 0

λe−λx x ≥ 0

F (x;λ) =

{
0 x < 0

1− e−λx x ≥ 0

R code to compute the distribution, where rate=λ.

dexp(x, rate =1) # pdf

pexp(q, rate =1) # cdf

qexp(p, rate =1) # quantile

rexp(n, rate =1) # random numbers

Gamma Distribution

X ∼ Gamma(α, β)

The Exponential Distribution is actually a special case of the Gamma Distribution where Gamma(1, λ) =
Exp(λ).

E[X] = αβ

Var[X] = αβ2

R code to compute the distribution, where shape=α and rate= 1
β .
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dgamma(x, shape , rate =1) # pdf

pgamma(q, shape , rate =1) # cdf

qgamma(p, shape , rate =1) # quantile

rgamma(n, shape , rate =1) # random numbers

Joint Probability Distributions and Random Samples

The covariance between two rv’s X and Y

Cov[X,Y ] = E[X · Y ]− µX · µY

The correlation coefficient of X and Y denoted by Corr[X,Y ] or ρX,Y

Corr[X,Y ] =
Cov[X,Y ]

σX · σY

Point Estimation

A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. It is
obtained by selecting a suitible statistic and computing its value from a given sample data. The selected
statistic is called the point estimator of θ.
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